A Weighted Generalized Maximum Entropy Estimator with a Data-driven Weight
نویسنده
چکیده
The method of Generalized Maximum Entropy (GME), proposed in Golan, Judge and Miller (1996), is an information-theoretic approach that is robust to multicolinearity problem. It uses an objective function that is the sum of the entropies for coefficient distributions and disturbance distributions. This method can be generalized to the weighted GME (W-GME), where different weights are assigned to the two entropies in the objective function. We propose a data-driven method to select the weights in the entropy objective function. We use the least squares cross validation to derive the optimal weights. Monte Carlo simulations demonstrate that the proposed W-GME estimator is comparable to and often outperforms the conventional GME estimator, which places equal weights on the entropies of coefficient and disturbance distributions.
منابع مشابه
The Data-Constrained Generalized Maximum Entropy Estimator of the GLM: Asymptotic Theory and Inference
Maximum entropy methods of parameter estimation are appealing because they impose no additional structure on the data, other than that explicitly assumed by the analyst. In this paper we prove that the data constrained GME estimator of the general linear model is consistent and asymptotically normal. The approach we take in establishing the asymptotic properties concomitantly identifies a new c...
متن کاملGeneralized Maximum Entropy Analysis of the Linear Simultaneous Equations Model
A generalized maximum entropy estimator is developed for the linear simultaneous equations model. Monte Carlo sampling experiments are used to evaluate the estimator’s performance in small and medium sized samples, suggesting contexts in which the current generalized maximum entropy estimator is superior in mean square error to two and three stage least squares. Analytical results are provided ...
متن کاملGeneralized Maximum Entropy Estimators: Applications to the Portland Cement Dataset
Consider the linear regression model y = X + u in the usual notation. In many applications the design matrix X is frequently subject to severe multicollinearity. In this paper an alternative estimation methodology, maximum entropy is given and used to estimate the parameters in a linear regression model when the basic data are ill-conditioned. We described the generalized maximum entropy (GME) ...
متن کاملGeneralized Maximum Entropy Analysis of the Simultaneous Equations Model
A generalized maximum entropy estimator is developed for the linear simultaneous equations model. Monte Carlo sampling experiments are used to evaluate the estimator’s performance in small and medium sized samples, suggesting contexts in which the current generalized maximum entropy estimator is superior in mean square error to two and three stage least squares. Analytical results are provided ...
متن کاملGeneralized entropies through Bayesian estimation
The demand made upon computational analysis of observed symbolic sequences has been increasing in the last decade. Here, the concept of entropy receives applications, and the generalizations according to Tsallis H (T) q and R enyi H (R) q provide whole-spectra of entropies characterized by an order q. An enduring practical problem lies in the estimation of these entropies from observed data. Th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Entropy
دوره 11 شماره
صفحات -
تاریخ انتشار 2009